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INVITED ARTICLE

Orientational order in nematic polymers – some variations on the Maier–Saupe theme

Stephen J. Picken*

Nano Structured Materials, Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands

(Received 26 February 2010; accepted 15 April 2010)

This review discusses some variations on the standard Maier–Saupe model which have been found to be useful for
the understanding of main-chain and side-chain polymers. These models can be reduced to more general forms,
providing a library of Maier–Saupe variants that may be applied to a wide range of thermotropic and lyotropic
nematic liquid crystals and polymers. In addition, an adaptation of the Maier–Saupe model is proposed that
includes a simplified excluded volume Onsager-like entropy term. This may allow a more quantitative evaluation of
the importance of molecular shape on the temperature dependence of the ,P2. orientational order parameter.
Throughout this review some as yet unstudied problems are introduced that may provide the inspiration for further
research.

Keywords: Maier–Saupe model, main-chain polymer, side-chain polymer

1. Introduction

This review discusses some variations on the standard

Maier–Saupe model that have been found to be useful

for the analysis of main-chain and side-chain polymers.

These models can be reduced to more general forms that
provide a library of Maier–Saupe variants that may be

applied to a wide range of thermotropic and lyotropic

nematic liquid crystals as well as liquid crystal polymers.

First, we need to discuss the Maier–Saupe model in its

basic form, and we note from the outset that it is some-

what irritating that, while the Maier–Saupe model is

unusually successful, it is not at all clear why it actually

works so well. We will return to this later.
In its most basic form the Maier–Saupe [1] model

states that the tendency for a material to form a

nematic phase is due to a molecular field potential

resulting from the nematic continuum that interacts

with a so-called test molecule (see Figure 1).

The molecular field nematic potential is assumed to

have axial symmetry, resulting from the axial symmetry

of the nematic phase, and is truncated to the first lead-
ing term of the general Legendre series expansion,

U ¼ �e,P2. P2ðcos bÞ: (1)

The overall shape of the potential is described by

–P2(cos b) ¼ –½(3cos2b – 1), which has minima at

the north and the south pole (b ¼ 0 and p). The

strength of the potential depends on the pre-factor e
and the level of nematic order of the continuum as

described by the ,P2. orientational order parameter.

This ensures that the nematic potential is switched off

when the system is in the isotropic state, ,P2.¼ 0, and

becomes stronger with increasing order of the environ-

ment. In a typical nematic phase ,P2. varies with

increasing temperature between about 0.8 and 0.4,

although much higher values of ,P2. may occur in

main-chain polymer systems, up to about 0.95.
The pre-factor, e, in Equation (1) is the strength of the

potential and this allows adjustment of the model to the

experimentally observed temperature, TNI, the nematic–i-

sotropic transition temperature. At this temperature the

nematic phase transforms to the isotropic phase, exhibit-

ing a (mildly) first-order phase transition with a relatively

small latent heat, typically in the 0.5–1.5 J g-1 range.
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Figure 1. The local alignment of molecules in the nematic
phase, the deviation angle b is the angle between the director
n and the molecular long axis of the mesogens, or the
molecular tangent vector in the case of main-chain
polymers as depicted here.
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Assuming the form of the potential in Equation (1)

as a given, it is then straightforward to derive the

orientational distribution function,

f ðbÞ ¼ 1

Z
exp

e
kBT

,P2. P2ðcos bÞ
� �

(2a)

and

Z ¼
ð1

�1

d cos b exp
e

kBT
,P2. P2ðcos bÞ

� �
: (2b)

Here Z is the partition function that ensures that f(b) is

normalised, i.e., the overall probability to find a par-
ticle is unity. The distribution function describes the

probability to find a molecule at angle b with respect

to the director.

The orientational distribution function can be used

to derive the order parameter of the test molecule via a

simple weighted average,

, P2 . ¼ 1

Z

ð1

�1

d cosðbÞ:P2ðcos bÞ exp

�
e

kBT
, P2 . P2ðcos bÞ

�
: ð3Þ

Since the value of the order parameter of the test

molecule has to be the same as that of the molecular

field environment, Equation (3) provides an implicit

relation between ,P2. and kBT/e. Then, demanding

that the actual state of the system should have the

lowest free energy F ¼ ,U. –T,S. ! –½e,P2.2

– kBT log Z leads to the result that for kBT/e larger

than 0.22 we have an isotropic phase with ,P2. ¼ 0,
and below kBT/e ¼ 0.22 we have a nematic phase with

,P2. . 0. This is shown in Figure 2.

It is remarkable that the Maier–Saupe model not

only gives a qualitative interpretation of the essentials

of thermotropic liquid crystals but that it also provides a

good quantitative model for ,P2. versus (T/TNI). This

is illustrated in Figure 3, showing some recent results for

birefringence measurements on quinquephenyl (PPPPP)
versus temperature which will be discussed in greater

detail elsewhere [2]. It should be noted that quinquephe-

nyl is considered to be an ideal model system to test the

Maier–Saupe model due to its chemical (and conforma-

tional) simplicity [3]. The main challenge of quinquephe-

nyl from an experimental point of view is its unusually

high value of TNI of about 425�C.

Despite its apparent success it is possible to discuss
at length why the Maier–Saupe model works at all.

That the potential strength scales with the order para-

meter of the environment is highly plausible, based on

the fact that the Maier–Saupe potential can be derived

by taking the average of all pair interactions. It also is

relatively straightforward to include ,P4.P4(cosb),

,P6.P6(cosb) and higher terms to the potential [4].

However, this makes the model more difficult to com-

pute, and moreover it does not really change the generic
form. The P2 truncation is sufficient if we wish to

approach the problem in the linear elastic regime. The

P2 function gives a torque acting on the test molecule

which is a linear function of the deviation angle, b, as it

can be approximated as P2ðcosbÞ � 1� 3
2
b2 via a

Taylor expansion. This is analogous to the quadratic

energy dependence of a linear elastic spring. In the

desire to keep things as simple as possible, the potential
as given by Equation (1) is the obvious choice. It is

worth noting that using a more complicated form for

U including P4, P6, etc., still yields a quadratic function
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Figure 2. The scaled temperature dependence of ,P2. as
predicted by the Maier–Saupe model, by solving Equation
(3) and minimising the free energy.
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Figure 3. Birefringence and ,P2. of quinquephenyl
(PPPPP) versus T/TNI compared to Maier–Saupe ,P2.
versus (T/TNI), using �n ¼ �n0,P2., with �n0 as an
adjustable parameter.
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of the deviation angle b as, for instance, P4(cosb) �
1–5b2 (b small), again giving rise to a linear torque

versus the deviation angle.

The primary problem is the interpretation of the

parameter, e, in its original form; this was assumed to

be related to the anisotropy of the molecular polarisa-

bility. Subsequent analysis showed that this interpre-
tation did not provide a sensible value for the

experimentally observed clearing temperatures, and

additional suggestions were made. This is discussed,

for instance, in the book by Chandrasekhar [5]. We

can even adopt the approach that the potential,

Equation (1), describes the Brownian motion of direc-

tor fluctuations as proposed by Faber [6].

The present author believes that in the final analy-
sis the primary physics of the Maier–Saupe model lies

in the recognition that the effective potential acting on

a particle has an axial symmetry, and that truncation

of this potential to the leading P2 term provides a

simple and effective way to deal with the temperature

dependence of the ,P2. order parameter of nematic

liquid crystals. In this simplified interpretation e is

viewed as an adjustable parameter. The primary
strength of the Maier–Saupe model is its simplicity.

It provides an excellent example of a generic molecular

field model that has withstood the test of time.

Nevertheless, while aiming to retain the simplicity, I

believe it is interesting to take the Maier–Saupe model

further by introducing some variations that have been

found to be useful when performing quantitative analy-

sis of the temperature dependence of the ,P2. order
parameter. In particular such modification is found to be

necessary when analysing main-chain and side-chain

polymer nematic liquid crystals. Also, nematic side-

chain polymers with non-linear optical (NLO) meso-

genic groups (NLO-chromophores) have been studied

for their field-induced polar and axial order. Introducing

an external field into the Maier–Saupe potential appears

to be useful as a method to model this, specifically in
relation to the order parameter dynamics in AC electric

fields [7]. Finally, I will introduce a variant of the

Maier–Saupe model that contains an Onsager-like

excluded volume entropy term. I believe this to be

worthy of further analysis, and it may provide a starting

point for a more quantitative assessment of the impor-

tance of molecular shape in thermotropic liquid crystals.

2. Variations of the Maier–Saupe model for main-

chain and side-chain polymers

In the case of polymer liquid crystals it has been found

useful to introduce two variants of the Maier–Saupe

model. The first of these, sometimes described as the

extended Maier–Saupe model (EMS), can be used for

main-chain and side-chain liquid crystal polymers

(LCPs) to describe the phase diagram and the tem-

perature dependence of the ,P2. order parameter [8,

9]. This model has been found to be of value as a

method of taking into account the effect of coupling

of the mesogenic groups, via the spacers and the poly-

mer backbone with side chain LCPs (SCLCPs) and via
the polymer chain itself for main chain LCPs

(MCLCPs). Other chemically coupled systems to be

considered could include dimers, dendrimers, etc.

The second model, introduced by myself and Van

der Vorst and sometimes therefore referred to as the

MSVP model, attempts to describe the effect of static

external electric fields on the axial and polar order para-

meters [10]. This is useful in particular for non-linear
optical SCLCPs that allow the poled nematic state to

be frozen in by cooling below the glass transition tem-

perature in the presence of the external field. During the

preparation of this review it has become apparent in fact

that the EMS and the MSVP models could (or should)

have been merged to provide further generalisation.

2.1 EMS model for main-chain LCP solutions

Let us first sketch the essential ingredients of the EMS

model in its original form. The primary step is the

recognition that for nematic solutions of main-chain

polymers the strength of the potential will scale with

the concentration of polymer to some power and that

the polymer chains themselves will have a tempera-

ture-dependent stiffness leading to a relative enhance-
ment of the strength of the nematic potential as the

temperature decreases. To achieve this it has been

proposed [8, 9] that the strength of the potential, e,

may be written as

e ¼ e�c2L2ðTÞ; (5)

where c is the polymer concentration and L(T) is the

temperature-dependent contour projection length,

given by

LðTÞ ¼ Lp

Tp

T
1� exp � LcT

LpTp

� �� �
: (6)

The anisometry of the polymer chain at low molar mass
and/or low temperature is governed by the physical

length of the backbone, i.e. the contour length, Lc,

which can be determined from the molar mass (e.g. the

mass averaged molar mass, Mw) and the structure of the

polymer repeat unit. This is the rigid-rod limit. On the

other hand, for high molar mass and/or sufficiently high

temperature the effective aspect ratio will be governed by

the local stiffness of the polymer chain or Gaussian coil,
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as described by the temperature-dependent persistence

length, Lp(T). The persistence length of a semi-flexible

polymer chain is the correlation length of the orientation

of the tangent vectors along the backbone, via

, cos �.ðsÞ ¼ u0� us ¼ expð�s=LpÞ, where s is the dis-

tance between the tangent vectors along the polymer

contour. The persistence length, Lp, is thus a measure
of the stiffness of the molecule.

The length of the contour projection (see Equation 6)

reduces to the contour length, Lc, at low temperature

and/or low Lc (Mw) – this is the rigid-rod limit, as can be

readily verified. At high temperature and high Lc (Mw),

Equation (6) reduces to the temperature-dependent per-

sistence length Lp(T )¼ Lp . Tp/T. In many situations it is

sufficient to simplify L(T ) to this high temperature, high
Lc approximation. The constants Lp and Tp refer to the

standard value of the persistence length which is usually

determined at Tp¼ room temperature by studying dilute

isotropic polymer solutions using viscosity measure-

ments, static and dynamic light scattering, etc.

The exponent for the c-dependence in Equation (5)

is motivated by the assumption that the interaction of

the polymer chains is Van der Waals in nature (1/r6 !
1/V2 ! c2). This c2 dependence is in agreement with

the original form proposed by Maier and Saupe.

Concerning the L2(T) dependence of e, this is moti-

vated by the fact that the Maier–Saupe potential

derives from an average two-particle interaction.

The modification of the Maier–Saupe model shown

in Equation (5) carries a number of implications. Firstly,

it is possible to determine the dependence of TNI on
polymer concentration, as discussed later. Secondly,

the temperature-dependent chain stiffness will act as a

feedback loop, modifying the shape of the temperature

dependence of ,P2.. This is demonstrated for the ara-

mid polymer poly (4, 4’-benzanalidyleneterephthala-

mide) (DABT), (see Figure 4). Figure 5 shows the

birefringence of a nematic 10.8% (w/w) solution of

DABT in 99.8% H2SO4. In Figure 5 the birefringence
has been converted to the anisotropy of the dielectric

constant at optical frequencies, �e ¼ n2
== � n2

?, which is

proportional to ,P2.. In practice the difference with

the more commonly used relation �n ¼ �n0,P2. is

rather small, since they are roughly proportional:

�e ¼ n2
== � n2

? ¼ ðn== þ n?Þðn== � n?Þ � 2�n�n.

The concentration dependence of TNI for a high

molar mass sample is easily derived if it is assumed that
TNI ¼ Kca, which is not unreasonable as we would

expect, a priori, that TNI¼ 0 at zero liquid crystal polymer

concentration.Usingsimplescalingrelationswethenfind

TNI ! ca ! e! c2 L2 ! c2 T �2
NI ! c2�2a: (7)

This implies that a ¼ 2 – 2a, or a ¼ 2/3. This is in

remarkably good agreement with the experimental

data, for example that found for DABT in H2SO4,

see Figure 6. Inclusion of the full expression for L(T)

allows the prediction of the effect of polymer molar

mass, which is also captured quite well. Note that to fit
all of the experimental data requires the setting of only

one adjustable parameter, e*, in Equation (5).

DABT

O

N

N NH 

O

O

H

H H

H

Figure 4. Structure of the main-chain aramid liquid
crystal polymer DABT. This forms nematic solutions in
H2SO4 (99.8%) between about 8–20% (w/w) polymer
concentration.
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Figure 5. The anisotropy of the dielectric constant of
DABT versus temperature for a polymer sample in a 10.8%
(w/w) solution in H2SO4 (99.8%), with a weight-averaged
molar mass, Mw, of 42 000, from [9], with permission.
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Figure 6. Nematic–isotropic transition temperatures of
DABT in H2SO4, taken at the 50% N–I phase separation
point, versus polymer concentration, for three molar mass
values, as indicated. The filled point is used to determine e*
in Equation (5). Taken from [8], with permission.
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The reasonably successful description of both

,P2. versus (T/TNI) and TNI (c) for aramid solutions

provides further support for the exponents used in

Equation (5) for the effects of stiffness and concentra-

tion. The EMS model as first used for aramid poly-

mers has been found to be applicable for other main-

chain polymer systems such as cellulose in phosphoric
acid [11], and poly (2, 6-diimidazo [4, 5-b: 4’, 5’ -e]

pyridinylene -1, 4- (2, 5- dihydroxy)phenylene) (PIPD)

in polyphosphoric acid [12].

2.2 Generalised forms

If we examine the EMS model described by Equations

(1) and (5) for the high molecular weight limit, it is

apparent that the temperature dependence of the stan-

dard Maier–Saupe model, e/kBT, is replaced by a new

temperature dependence, C/T 3, as Equation (5) implies
that the strength of the potential itself scales as 1/T 2,

U ! eT�1 !L2 ðTÞT�1 !T�2T�1 !T�3: (8)

The standard Maier–Saupe model depends on the
dimensionless parameter, T/TNI. In the EMS model,

which works quite well for aramid solutions and other

main-chain polymers, the value of T/TNI is effectively

replaced by (T/TNI)
3. Based on this, an obvious general-

isation of the Maier–Saupe model is to replace T/TNI by

(T/TNI)
a, where a ¼ 1 corresponds to the standard

Maier–Saupe model and a ¼ 3 is applicable to main-

chain polymer solutions. Other values of a may occur
and could provide further clues on subtle interactions

occurring in the system. For instance, loosely coupled

side-chain LCPs seem to be described by fitting ,P2.

versus (T) with a ¼ 1 (standard Maier–Saupe), whereas

more tightly coupled systems seem to require higher

values for a in the region of 2–3. This suggests that the

anomalous temperature dependence of ,P2. for the

tightly coupled mesogens is induced by the coupling of
the mesogens via the backbone and spacers, involving a

temperature-dependent stiffness of the coupling coeffi-

cient. This implies introducing a variant of the EMS

model for thermotropic side-chain polymers of the form

U ¼ �e TNI

T

� �a�1

,P2. P2ðcos bÞ: (9)

Applying this changes the standard Maier–Saupe evalua-

tion of ,P2. versus (T/TNI) into ,P2. versus

((T/TNI)
a), and calculating the EMS model therefore

only involves a simple remapping of the temperature

scale. For practical calculations it is sufficient to use an

approximate expression for the EMS temperature depen-
dence of ,P2. for T� TNI, and ,P2.¼ 0 for T . TNI:

,P2. ¼ 0:1þ 0:9

�
1� 0:99

�
T

TNI

�a�1
4

: (10)

This form was determined by optimising the analytical

approximation to the numerically calculated

Maier–Saupe curve (with a ¼ 1) by trial and error,
and is correct to within about 1%. Other values of a
then allow convenient calculation of the extended

Maier–Saupe curve, ,P2. versus (T/TNI)
a.

As an example of the application of the EMS model to

a complex nematic system, this is illustrated later for the

equimolar charge-transfer complex of 11-[pentakis(4-

methoxyphenylethynyl)phenoxy]-undecan-1-ol (D1) and

poly[11-((Z,E)-2,4,7-trinitro-9-fluorenylideneaminooxy)-
undecyl acrylate-co-methyl acrylate] (PA1), (see Figure 7,

which exhibits a NL to ND nematic–nematic phase transi-

tion). Figure 8 shows the temperature dependence of

,P2. for this system, which requires a ¼ 2 and a ¼ 1

for the NL and the ND phase, respectively (see [13] for

further details).

Figure 7. Structure of D1 and PA1.
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Figure 8. Temperature dependence of the orientational
order parameter of the equimolar charge-transfer complex
of D1 and PA1: (�) experimental data; (. . ..) and (—) fits of
the NL phase and ND phase using a ¼ 2 and a ¼ 1,
respectively. The inset shows a magnification. Taken from
[13], with permission.
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Finally, it is intriguing to note that in the EMS model

the remapping of the temperature scale is analogous to

the remapping of the time scale, as occurs in the widely

used Kohlraush stretched exponential expression for

glass dynamics [14]: �fðtÞ ¼ �f0 expð�ðt=tÞbÞ. This

may provide clues for a more rigorous derivation of the

form proposed in Equation (9).

2.3 A Maier–Saupe-like model for field-induced
order parameters of side-chain LCPs

Side-chain LCPs have been studied for applications in

NLO devices making use of field-induced polar order of

the mesogenic chromophores. In the absence of an

external electric field the nematic phase has uniaxial

symmetry without polar order, i.e. only the even orien-

tational order parameters ,P2., ,P4., etc., are non-
zero. On application of an external poling field the

,P1.¼,cos b. and ,P3.¼,½ (5cos3b – 3cos b).

order parameters are also non-zero and we obtain field-

induced polar order in the system. The question becomes:

what effect does the axial order of the nematic phase have

on the level of polar order at a given electric field strength?

To describe this it is relatively straightforward to

include electric field-dependent terms into the
Maier–Saupe potential [10], as in

U ¼ �e, P2 . P2 ðcos bÞ � m0 E cos b
� 1=3 � aE2 P2 ðcos bÞ: (11)

The first field-dependent term describes the interaction
with the permanent dipole moment, m0, of the chromo-

phore. The second field-dependent term, which can

usually be neglected, describes the effect of the field-

induced dipole moment, where �a is the anisotropy of

the molecular polarisability, �a¼ a//– a?. In the absence

of a nematic phase the field-dependent terms will cause a

certain level of polar and axial alignment in the system,

and when the system becomes nematic the electric field
will further enhance ,P2. and the field dependence of

the polar order will become larger.

The effect of axial order on the polar order can be

calculated analytically by comparing the Ising model,

with ,P2. ¼ 1 in the absence of a field, and the

isotropic model using U ¼ – mo E cos b, i.e. initially

with ,P2. ¼ 0. For the Ising model it is found that

, cos3 b. Ising �
m0E

kBT
(12)

and for the isotropic model

, cos3 b. Isotropic �
m0E

5kBT
; (13a)

,P2. Isotropic �
1

15

m0E

kBT

� �2

: (13b)

These expressions are valid for small field strength in
the linear regime; the full expressions, including the

non-linear response at high fields, are given in the

paper by Van der Vorst and Picken [10].

From this simplified analysis it is observed that

perfect axial order leads to a five-fold enhancement

of ,cos3b. compared to an initially isotropic sample.

In a typical nematic phase the ,P2. value is smaller,

giving rise to a somewhat smaller enhancement factor,
typically about 3–4, which has subsequently been ver-

ified experimentally. The average value of ,cos3b. is

a useful quantity as it is directly related to the experi-

mentally determined linear electro-optic, or Pockels,

effect via wð2ÞZZZ ¼ NFbZZZ cos3 b
� �

, where bZZZ is the

ZZZ component of the molecular hyperpolarisability,

N is the number density and F is the local-field correc-

tion. It is straightforward to verify that ,cos3b. ¼
(3,P1. þ 2,P3.)/5. Figure 9 shows the field-

induced polar order predicted by this model and

some comparisons with simplified approximations.

It is also worth noting that this model predicts that

above a certain field strength the ,P2. versus tem-

perature curves become continuous, i.e. the field-

dependent phase diagram exhibits a critical point, as

shown in Figure 10.
The model described by Equation (11) is in fact the

type of model which might be proposed for a nematic

liquid crystal of low molar mass with NLO mesogenic
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Ising model

Isotropic model

1000

Figure 9. The polar order ,cos3(b). calculated as a
function of the applied electric field, assuming 7 D for the
molecular dipole moment, and 47 Å3 for the anisotropy of
the molecular polarisability. The thick curves are the exact
solution of the Ising and isotropic models, the thin solid
curves are obtained using the potential as given in
Equation (11), for an initially isotropic and an initially
nematic zero-field state. The dotted and dashed lines are
from a linear approximation of the so-called SKS model
[15]. Taken from Figure from [10], with permission.
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groups, such as an alkyl nitrostilbene or similar struc-

ture. The question arises as to whether the standard

Maier–Saupe model is applicable to a side-chain LCP

(in the absence of a field). In the event, some side-chain

LCPs do indeed require a steeper ,P2. dependence,

as discussed earlier, see Figure 8. Based on this obser-
vation an obvious further generalisation of the model

would be to introduce a temperature-dependent

strength of the nematic potential, using the form pro-

posed in Equation (9),

U ¼ �e TNI

T

� �a�1

,P2. P2ðcos bÞ � m0 E cos b

� 1=3 �aE2 P2ðcos bÞ: (14)

While this approach may be useful, it is not immediately

obvious how to calculate the temperature-dependence of

the various (field-induced) order parameters in a straight-
forward manner. After dividing U by kBT the first term

will give a (1/T)a dependence, while the other terms retain

the standard 1/T dependence. Solving Equation (13) is no

longer a simple remapping procedure.

2.4 Extending the Maier–Saupe model with a
non-thermal Onsager-like term

As a final variant of the Maier–Saupe model I would

like to introduce the form of the nematic potential

U ¼ �ðe1 þ e2TÞ,P2. P2ðcos bÞ: (15)

The e1 term is the regular Maier–Saupe potential,

whereas the e2T term may be recognised as an entropy,
as it is proportional to T. Applying Equation (15) into

a Bolzmann factor introduces the variable, U/kBT, so

that the e1 term gives a temperature dependence and

the e2 term provides a non-thermal contribution, since

the temperature divides out. If we consider this non-

thermal part only (setting e1 ¼ 0) we obtain

U ¼ �e2T ,P2. P2ðcos bÞ (16)

which is analogous to the two-particle excluded

volume (entropy) term in the Onsager model [16].

For rods with L/D aspect ratio,

U ¼ 2kTDL2 sin �j j: (17)

It is worth stressing that the Onsager model is derived

by considering the two-particle excluded volume only,

which is probably acceptable for high aspect ratio rigid

rods. If we have a high concentration of hard rods of
lower aspect ratio the problem of excluded volume

becomes intractable. Attempts to calculate general

expressions for the three-particle excluded volume

have been unsuccessful, and higher order terms would

be required. The form proposed in Equation (16) (and

(15)) is therefore a postulated first-order approximation

for this excluded volume entropy. It has the required

up / down symmetry, is a quadratic function of the
deviation angle, and through inclusion of temperature

it provides a non-thermal entropy response by the sys-

tem. In effect it is an excluded volume term, strongly

reminiscent of the original Maier–Saupe model.

Predicting the phase diagram resulting from

Equation (15) is straightforward if we introduce a

fictive temperature, Tf, according to

ðe1 þ e2TÞ
kBT

¼ e
kBTf

(18)

and solving for Tf gives

Tf ¼
e
e1

T

1þ e2
e1

T
¼ aT

1þ bT
: (19)

In particular, by simple rearrangement we also obtain

TNI ¼
Tf ;NI

a� bTf ;NI

: (20)

Expressions (19) and (20) can be used to remap the real

temperature to the fictive temperature, which can then

be used to calculate the corresponding order para-

meter, ,P2., using Equation (10). It should be

noted that TNI may become infinite if the non-thermal

contribution e2T dominates, and the final expression

for the temperature remapping procedure is given as
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Figure 10. The variation of the ,P2. order parameter
with variation in the poling temperature for the values of
the molecular dipole moment, and anisotropy of the
molecular polarisability, as in Figure 9. Note the critical
point between E ¼ 9 	107 and 10 	107 V/m. Taken from
[10], with permission.
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T

TNI

¼ Tf

Tf ;NI

a� bTf ;NI
Tf

Tf ;NI

a� bTf ;NI

: (21)

It is interesting to examine some ,P2. curves for a

few selected values of these parameters, (see Figure

11). The results are shown for systems that still have

a nematic–isotropic temperature at finite TNI, and in

which the x-axis is the reduced temperature, T/TNI.
From Figure 11 it becomes clear that by introducing a

non-thermal term in the Maier–Saupe potential the

,P2. temperature dependence can change in a qua-

litative sense. The temperature dependence changes

close to TNI from the usual convex shape to become

almost linear. In addition, for certain values of the

parameters the curve contains both convex and con-

cave regions. It would be interesting to compare this
model with experimental data for ,P2., especially for

systems with a systematic variation in shape, for exam-

ple biphenyls, terphenyls, tetraphenyls, and so on. It

could also be useful to study the ,P2. temperature

dependence at elevated pressure, as it would seem

reasonable to expect molecular shape and excluded

volume to become more important as the pressure is

increased. Of course the model may also be relevant in
analysing the actual location of TNI versus molecular

shape.

3. Summary and conclusions

A range of variants of the Maier–Saupe model that

have been found useful for describing the phase beha-

viour and temperature-dependence of the order para-
meters for a variety of main-chain and side-chain liquid

crystal polymers have been discussed. These models

include methods of dealing with the effect of mesogen

and polymer concentration. In addition they explain, at

least partly, the steeper temperature dependence of

orientational order often observed around TNI. In

some cases, for instance for side-chain polymers with

NLO-mesogens, it has also been found useful to include

the effect of static external electric fields, giving rise to
field-induced polar order parameters. The degree of

polar order is found to be coupled to the axial order

and this rather complex situation can be dealt with

quite successfully by including electric field-dependent

terms in the Maier–Saupe potential. Finally, we have

introduced the field-dependent extended Maier–Saupe

model, and also a Maier–Saupe model containing a

non-thermal excluded volume entropy term, somewhat
analogous to the Onsager model. We expect that these

Maier–Saupe variants may find useful application in

the improved analysis of the order parameter, for both

molecular and polymeric nematic liquid crystals. It

should be noted that others have made excellent con-

tributions to the theory of side-chain and main-chain

LCPs based on the original ideas of Maier and Saupe,

notably in papers by Warner and co-workers [17, 18].

Acknowledgements

I wish to acknowledge the large number of past and present
colleagues who have contributed to this work.

References

[1] Maier, W.; Saupe, A. Z. Naturforsch. 1958, 13a,
564–566; Maier, W.; Saupe, A. Z. Naturforsch. 1959,
14a, 882–889; Maier, W.; Saupe, A. Z. Naturforsch.
1960, 15a, 287–292.

[2] Kuiper, S.; Norder, B.; Jager, W.F.; Dingemans, T.J.;
Picken, S.J. To be submitted for publication.

[3] Dingemans, T.J.; Madsen, L.A.; Zafiropoulos, N.A.;
Lin, W.B.; Samulski, E.T. Phil. Trans. A, Math. Phys.
Eng. Sci. 2006, 364, 2681–2696.

[4] Humphries, R.L.; James, P.G.; Luckhurst, G.R. J.
Chem. Soc., Faraday Trans. II. 1972, 68, 1031–1044.

[5] Chandrasekhar, S. Liquid Crystals; Cambridge
University Press: Cambridge, 1992.

[6] Faber, E. Proc. Roy. Soc. A 1977, 353(1673), 247–259.
[7] Picken, S.J. Macromol. Symp. 2000, 154, 95–104.
[8] Picken, S.J. Macromol. 1989, 22, 1766–71.
[9] Picken, S.J. Macromol. 1990, 23, 464–70.

[10] Van der Vorst, C.P.J.M.; Picken, S.J. J. Opt. Soc. Am.
B. 1990, 7, 320–325.

[11] Boerstoel, H.; Maatman, H.; Picken, S.J.; Remmers,
R.; Westerink, J.B. Polymer 2001, 42, 7363–7369.

[12] Picken, S.J.; Boerstoel, H.; Northolt, M.G. In The
Encyclopedia of Materials: Science and Technology:
Buschow, K.H.J., Cahn, R., Flemings, M.C., Ilschner,
B., Kramer, E.J., Mahajan, S., Veyssiere, P., Eds.;
Elsevier: Oxford, 2001; pp 7883–7887.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

T/TNI

<
P

2>

0

0.005

0.01

0.015

0.019

Figure 11. The temperature dependence of the ,P2.
order parameter predicted using the potential as proposed
in Equation (14). The curves are generated using a¼ 1 and b
as indicated in the Figure using the remapping procedure as
described by Equation (18). The value of Tf,NI was
arbitrarily set at 50 K (color version online).

984 S.J. Picken

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



[13] Kouwer, P.H.J.; Jager, W.F.; Mijs, W.J.; Picken, S.J.
Macromol. 2002, 35, 4322–4329.

[14] Kohlrausch, R. Annalen der Physik and Chemie
(Poggendorff) 1854, 91, 179.

[15] Singer, K.D.; Kuzyk, M.G.; Sohn, J.E. J.Opt. Soc. Am.
B 1997, 4, 968–976.

[16] Onsager, L. Annals. of the New York Academy of Sciences.
1949, 51(4), 627–659.

[17] Warner, M. Mol. Cryst. Liq. Cryst. 1988, 155, 433–442.
[18] Wang, X.J.; Warner, M. J. Phys. A: Math. Gen. 1986,

19, 2215–2227.

Liquid Crystals 985

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1


